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Purpose of review

An increasing number of patients with rheumatoid arthritis (RA) are using cannabis to treat their symptoms,
although systematic studies regarding efficacy in RA are lacking. Within this review we will give an
overview on the overall effects of cannabinoids in inflammation and why they might be useful in the
treatment of RA.

Recent findings

Peripherally, cannabinoids show anti-inflammatory effects by activating cannabinoid type 2 receptors (CB2)
which decrease cytokine production and immune cell mobilization. In contrast, cannabinoid type 1
receptor (CB1) activation on immune cells is proinflammatory while CB1 antagonism provides anti-
inflammatory effects by increasing b2-adrenergic signaling in the joint and secondary lymphoid organs. In
addition, the nonpsychotropic cannabinoid, cannabidiol (CBD) demonstrated antiarthritic effects
independent of cannabinoid receptors. In addition to controlling inflammation, cannabinoids reduce pain
by activating central and peripheral CB1, peripheral CB2 receptors and CBD-sensitive noncannabinoid
receptor targets.

Summary

Cannabinoids might be a suitable treatment for RA, but it is important to target the right receptors in the
right place. For clinical studies, we propose a combination of a CB2 agonist to decrease cytokine
production, a peripheral CB1 antagonist to prevent detrimental CB1 signaling and to support anti-
inflammatory effects of CB2 via activation of b2-adrenergic receptors and CBD to induce cannabinoid-
receptor-independent anti-inflammatory effects.
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INTRODUCTION

Cannabis has been used for millennia as treatment
for a wide variety of diseases such as depression,
impotence, arthritis and kidney stones [1]. From the
beginning of the 19th century until its complete ban
in the United States in 1970, the psychopharmaco-
logical effects of cannabis were described in detail
and phytocannabinoids were included in many
pharmaceutical products. Significantly, the opioid
sparing effect of cannabinoids was already known at
the beginning of the 20th century and therefore, the
plant was also used to treat opioid dependence [1].

Cannabis sativa contains over seventy different
cannabinoids, with tetrahydrocannabinol (THC)
and the nonpsychotropic cannabidiol (CBD) being
the most prominent and best characterized [2].
Although THC mainly binds and activates the two
cannabinoid receptors in humans, cannabinoid
type 1 and 2 receptors (CB1 and CB2), CBD acts as
a negative allosteric modulator at CB1 and CB2,
t © 2019 Wolters Kluwe
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limiting the effects of THC, but it also binds and
activates several transient receptor potential (TRP)
ion channels, orphan G-protein coupled receptors
(GPCRs) and it is involved in serotonergic neuro-
transmission [3
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&&

,7,8]. Most effects of canna-
bis formulations are attributed to activation/
modulation of CB1 and CB2. Although CB1 is the
predominant cannabinoid receptor in the central
nervous system, CB2 is distributed mainly in the
periphery with high expression in immune cells
[9,10]. In the central nervous system, cannabinoid
r Health, Inc. All rights reserved.
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KEY POINTS

� CB2 activation mediates anti-inflammatory effects in RA
by decreasing immune cell migration and cytokine
production.

� CB1 activation promotes proinflammatory effects in
immune cells, but reduces pain and depression.

� CB1 antagonists provide anti-inflammatory effects by
enhancing b2-adrenergic signaling in arthritis.

� CBD is effective in reducing inflammation and pain and
might enhance the efficacy of therapeutic drugs.

� A cannabinoid-based RA therapy would preferentially
activate CB2, inhibit CB1 peripherally and include CBD
to target noncannabinoid pathways.

Rheumatoid arthritis
receptors regulate neurotransmitter release and,
depending on their concentration, modulate inhibi-
tory and excitatory neurotransmission [11,12

&

].
Peripheral effects of cannabinoids include modula-
tion of pain pathways, cytokine and immunoglobu-
linproduction, control of immunecell migration and
control of glucose/energy supply [13–18,19

&&

,20].
The endogenous ligands for CB1 and CB2 are

termed endocannabinoids with 2-arachidonylgly-
cerol (2-AG) and anandamide (AEA) being the most
prominent compounds [21,22]. Like phytocannabi-
noids, the action of endocannabinoids is not
restricted to cannabinoid receptors but they also
modulate TRP channels, gamma-aminobutyric acid
receptors and several GPCRs [8,23,24]. Although the
effects of exogenous cannabinoids are long lasting,
endocannabinoids are rapidly (within minutes)
inactivated enzymatically. Fatty acid amide hydro-
lase (FAAH) is the main degrading enzyme for AEA,
while 2-AG is deactivated by monoacylglycerol
lipase amongst others [25,26]. Significantly, AEA
and 2-AG can also be metabolized by oxygenases,
especially cyclooxygenase-2 (COX-2), yielding
novel compounds with a pharmacology different
from the parental endocannabinoids [27]. This
mechanism might be especially important in
(chronic) inflammatory situations where endocan-
nabinoid metabolism might be diverted to COX-2,
which is upregulated by proinflammatory cytokines
[28]. In line with this, dual inhibitors for FAAH and
COX-2 have been developed that synergize in
increasing endocannabinoid levels [29].

Due to their anti-inflammatory effects, (endo-)
cannabinoids have been considered as a potential
therapy for the treatment of rheumatic diseases.
However, at the moment there is no significant
evidence for the efficacy of cannabinoid-based drugs
 Copyright © 2019 Wolters Kluwer H
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in the treatment of rheumatoid arthritis (RA),
although it is included in the list of conditions
eligible for receiving medical cannabis in Canada
and several US states and the majority of patients
with arthritis reported beneficial effects of the drug,
for example less pain and an opioid-sparing effect
[30,31

&

,32]. Although human data are lacking, can-
nabinoids have been used in animal models of
arthritis providing evidence for their clinical effi-
cacy [33–36]. In this review, we discuss possible
antiarthritic effects of cannabinoids and we hypoth-
esize that cannabinoids might also help controlling
RA-associated comorbidities (e.g. insulin resistance,
hypertension) which is of special importance as they
contribute to the increased mortality of RA patients
[37].
DIRECT EFFECTS OF CANNABINOIDS ON
THE IMMUNE SYSTEM: IT CAN GO EITHER
WAY

RA is characterized by immune cell infiltration into
the joint, augmented cytokine and chemokine pro-
duction by resident fibroblasts and macrophages
and cartilage destruction by matrix degrading
enzymes [38,39]. Consequently, current RA thera-
peutics (including glucocorticoids) often interfere
with cytokine production or signaling but are often
associated with side effects related to infection or
immune disturbances [40–42]. Therefore, reduction
of proinflammatory cytokine production and sig-
naling without an overt risk of infection would be a
preferable treatment of RA. In vitro data and results
from animal experiments suggest that cannabinoids
might help with just that. Early studies in the 1970s
already demonstrated that THC inhibits macro-
phage function [43,44]. In later experiments, it
was demonstrated that CB2 is the target receptor
in macrophages to mediate anti-inflammatory
effects. CB2 reduces the activation of the NLRP3
inflammasome and subsequent IL-1b release,
enhances clearance of apoptotic cells and generally
decreases cellular activation in response to tumor
necrosis factor (TNF) or lipopolysaccharide (LPS)
[45–48]. Recently, the importance of CB2 in RA
development was emphasized by the finding that
a loss-of function gene polymorphism increased the
risk for disease 10 fold [49

&

]. In addition, inhibiting
AEA degradation with subsequent increase in CB2

activation reduced arthritis score and progression in
a mouse model of mice with collagen-induced
arthritis [36]. In contrast to CB2, CB1 induces proin-
flammatory effects by promoting macrophage M1
polarization, generation of reactive oxygen species,
fibrosis and enhancing TLR4 signaling [50,51

&&

,
52,53]. This might be prevented by the use of CB1
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Cannabinoids in the treatment of rheumatoid arthritis Lowin et al.
antagonists, but unfortunately, brain penetrable
CB1 antagonists, like rimonabant, demonstrated
psychiatric side effects which led to discontinuation
of the drug [54]. This was followed by the develop-
ment of peripherally restricted CB1 antagonists
which might circumvent these central side effects
[55].

Similar effects of cannabinoids have been dem-
onstrated with cells from the adaptive immune
system. In T cells, proliferation, differentiation
and nuclear factor kappa-light-chain-enhancer of
activated B cells activity were inhibited, while in B
cells, migration, cellular energy supply and response
to T-cell-independent antigens were modulated by
CB2 activation [56–59].

Although THC regulates several aspects of
adaptive and innate immunity, an involvement of
cannabinoid receptors is questionable as high con-
centrations of THC were necessary to elicit anti-
inflammatory effects and effects were not shown
to be inhibited by CB1/CB2 antagonists [60–63].
Although the mechanism of action is still unclear,
CBD and its analogues demonstrated promising
results in combating chronic inflammation in RA
[33,35]. CBD induces regulatory T cells, activates
and desensitizes several TRP ion channels, ligates
peroxisome proliferator-activated receptor-g and
binds several other orphan GPCRs which might
explain its complex pharmacology [4

&

,7,64–66].
Like CBD, endocannabinoids engage several cellular
targets other than cannabinoid receptors and some
anti-inflammatory effects are attributed to activa-
tion of noncannabinoid related pathways [67].

When considering direct therapeutic effects of
cannabinoids for the treatment of RA, it can be
concluded that CB2 agonists induce beneficial
anti-inflammatory effects by downregulating pro-
inflammatory cytokine production and reducing
mobilization and migration of immune cells to
sites of inflammation CB1 agonists promote proin-
flammatory signaling and noncannabinoid, but
endocannabinoid and phytocannabinoid (CBD)-
sensitive receptors mediate anti-inflammatory
effects.

In this respect, a combination of a CB2 agonist
and a peripherally restricted CB1 antagonist
together with CBD would hypothetically be an opti-
mal combination to combat excessive inflammation
and cytokine production in RA. Significantly, com-
pounds with both, agonistic action at CB2 and
antagonistic action at CB1, have already been
described but not yet tested in models of chronic
inflammation [68]. Similar therapeutic effects might
be achieved by combining an endocannabinoid
degradation inhibitor (preferentially a FAAH inhib-
itor) with a CB1 antagonist.
 Copyright © 2019 Wolters Kluwe
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INDIRECT ACTIONS OF CANNABINOIDS:
TARGETING COMORBIDITIES IN
RHEUMATOID ARTHRITIS
In addition to having direct effects on immune cells,
cannabinoids might exert many additional effects on
chronic inflammation via modulation of the sympa-
thetic nervous system (SNS) and its neurotransmit-
ters. It has already been demonstrated that anxiolytic
and antidepressant effects or side effects of cannabi-
noids are dependent on the modulation of noradren-
ergic and serotonergic neurotransmission [12

&

]. In
addition, the beneficial effects of CB1 antagonism
in a murine model of arthritis was dependent on
intact b2-adrenergic signaling and CB1 was found
to form dimers with b2- adrenergic receptor [69,70].

Many RA patients suffer from comorbidities
such as depression and cardiovascular events and
it has been shown that hypertension and osteo-
porosis correlate with disease activity [71,72].
Decreased parasympathetic and an increase in sym-
pathetic activity is one cause for the development of
these conditions and, as they counteract neuro-
transmitter imbalances, cannabinoids might help
in this respect [73–75]. In animal models, systemic
activation of the SNS at the early phase of arthritis
constitutes a proinflammatory signal as it mobilizes
leukocytes, increases antigen uptake/presentation
and provides energy to the immune system [76].
In addition, direct anti-inflammatory effects of sym-
pathetic neurotransmitters on immune cells in the
joint are blunted due to the repulsion of sympa-
thetic nerve fibers from the site of inflammation
[77]. In the later phase of the disease, compensatory,
catecholamine-producing cells appear in the joint
whose ablation aggravates experimental arthritis
[78]. The question arises, how would cannabinoids
interfere with the SNS in RA?

Cannabinoids modulate the outflow of sympa-
thetic neurotransmitters centrally and peripherally
through CB1 and in the early phase of arthritis or
to postpone clinical symptoms, reduction of SNS
activity might be beneficial [12

&

]. Hypertension is a
widespread problem in RA and it is often accompa-
nied by insulin resistance and metabolic disturbances
[79]. Activation of CB1 reduces blood pressure and
this effect was due to a reduction in noradrenergic
tone [80]. Significantly, the consumption of cannabis
is also associated with lower risk of metabolic syn-
drome and diabetes and might therefore prevent the
RA-induced changes in metabolism [81]. This seems
paradoxical as cannabis is known for its stimulating
effect on food intake, but due to the partial agonsim
of THC, it also acts as antagonist for endocannabi-
noids [82,83]. In addition, CB1 desensitizes and
downregulates rather quickly resulting in functional
antagonism even in the presence of agonist although
r Health, Inc. All rights reserved.
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the rate and speed of this process is dependent on cell
type and context [84]. Although CB1 agonism might
have some beneficial effects in the treatment of RA
comorbidities, CB1 antagonists are better suited to
directly target inflammation in RA. Indeed, it has
been shown that the anti-inflammatory effect of
peripherally restricted CB1 antagonists is dependent
on intact adrenergic signaling in the spleen. CB1

antagonism increases adrenergic b2 signaling which
reduces TNF production and arthritis severity [70]. In
addition, metabolic changes due to low level sys-
temic inflammation in RA might be diminished with
CB1 antagonists. In fact, this has been observed in the
treatment of obesity and CB1 antagonists improved
insulin levels, lowered blood glucose and promoted
a lean phenotype [82]. Another mechanism by
which CB1 antagonism might contribute to an
anti-inflammatory phenotype in RA is by increasing
local norepinephrine levels in joint and spleen that
allow b-adrenergic signaling [70,85]. Norepinephrine
has higher affinity for proinflammatory a-adrenergic
receptors than for b-receptors resulting in mostly
proinflammatory a-effects under low levels of nor-
epinephrine [86]. As sympathetic nerves are repelled
from the joint in the course of RA, norepinephrine
levels are low serving an a-adrenergic dependent,
proinflammatory role [77]. Like in the LPS-induced
arthritis mouse model [70], use of a CB1 antagonist
might be able to increase intraarticular norepineph-
rine concentrations due to disinhibition at sympa-
thetic nerve terminals recovering anti-inflammatory
b-adrenergic effects. Although not tested experimen-
tally, catecholamine-producing cells that appear in
the course of arthritis might also be modulated by
cannabinoids. The presence of the monoamine trans-
porter VMAT2 suggests that catecholamines are
stored in vesicles in tyrosine hydroxylase positive,
catecholaminergic cells and their release might be
under the control of CB1 just like their neuronal
counterparts [87]. If this is true, CB1 activation would
counteract catecholamine release and promote a-
adrenergic, proinflammatory effects while CB1 inhi-
bition would be beneficial by increasing catechol-
amine levels, therebypromoting b-adrenergic effects.
CANNABINOIDS AND PAIN

The reduction of neuropathic and cancer pain are
known indications for the use of cannabinoids and
three cannabis-based drugs (Nabilone, Sativex and
Marinol) are used clinically for this purpose [88,89].
Although there are only very limited clinical data on
the effect of cannabinoids on arthritic pain, reports
from patients show that a significant number uses
cannabis to treat their symptoms [90]. In addition
one study investigated the effects of sativex, a
 Copyright © 2019 Wolters Kluwer H
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combination of CBD and THC, in arthritis patients
and this drug demonstrated a significant analgesic
effect with mild adverse events like dizziness, but
these did not lead to withdrawal from the study [91].
Although data from RA patients regarding cannabi-
noid effects are scarce, models of arthritic, inflam-
matory and neuropathic pain demonstrated a clear
reduction of pain and allodynia when animals were
treated with cannabinoids [92,93,94

&

]. In addition,
data from human cohorts suggest at least limited
efficacy of cannabis-based products on neuropathic
pain [95]. Cannabinoids modulate pain by activat-
ing CB1 and CB2 receptors but some compounds also
directly ligate the nociceptors TRP vanilloid 1
(TRPV1) and TRP Ankyrin 1 (TRPA1) [92,94

&

,96].
Although CB1 desensitizes nociceptors like the cap-
saicin receptor TRPV1 directly, CB2 might reduce
pain by inhibiting proinflammatory cytokine pro-
duction and immune cell infiltrates that promote
nociceptor function [97]. In addition, it has been
demonstrated that CB2 activation induces the
peripheral release of b-endorphin, which might con-
tribute to CB2-induced analgesia [98,99]. Further-
more, CB2 might functionally interact with
peripheral m-opioid receptors to induce antinocicep-
tion and animals treated with a CB2 agonist along
with morphine showed additive analgesic effects
[100]. Although CB2-mediated analgesia is peripher-
ally restricted, CB1 reduces pain by peripheral and
central mechanisms [101]. TRPV1 is a direct target of
cannabinoids but it is also an ionotropic receptor for
endocannabinoids [97,102,103].AEAisable todesen-
sitize TRPV1 and animals with complete FAAH inhi-
bition demonstrate increased pain thresholds and
TRPV1 antagonists or desensitizing agonists resulted
in decreased proinflammatory cytokine production
by macrophages [104–107]. Cannabinoids also sup-
port opioid-induced analgesia and it has been dem-
onstrated that a combination of low dose THC with
morphine prevents m-opioid receptor desensitization
and provides superior pain relief [89,108].

In addition to CB1 and CB2, other pathways are
involved in cannabinoid-induced nociception. It
has been shown that the nonpsychotropic phyto-
cannabinoid CBD promotes analgesia by activating
serotonin 5-HT1a and TRPV1 receptors while AEA
provides additional analgesic effects via peroxi-
some-proliferator activated receptor a [109

&

,110].
CONCLUSION: WHAT WOULD BE A
PREFERABLE CANNABINOID-BASED
TREATMENT FOR RHEUMATOID
ARTHRITIS?

CB1 activation is accompanied by central,
psychotropic side effects but also by peripheral,
ealth, Inc. All rights reserved.
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FIGURE 1. Consequences of a peripherally restricted cannabinoid type 1 receptor antagonist combined with cannabidiol and a
fatty acid amide hydrolase inhibitor on arthritic pain and inflammation. (1) Use of a peripherally restricted cannabinoid type 1
receptor antagonist increases local norepinephrine release and promotes anti-inflammatory b2-adrenergic signaling (indicated by
the yield sign). (2) In addition, proinflammatory cannabinoid type 1 receptor signaling on immune cells is inhibited while anti-
inflammatory effects are enhanced (indicated by the stop sign). (3) Fatty acid amide hydrolase inhibition increases systemic
endocannabinoid levels. (4) This is accompanied by an increase in anti-inflammatory cannabinoid type 2 receptor signaling in
macrophages, synovial fibroblasts, B cells and T cells. (5) Endocannabinoids but also cannabidiol desensitize and therefore inhibit
the nociceptors TRP vanilloid 1 (TRPV1) and transient receptor potential Ankyrin 1 (TRPA1) which supports antiinflammation in
immune cells but also inhibit pain transmission in sensory nerves. (6) Fatty acid amide hydrolase inhibition also increases central
endocannabinoid levels. This allows for central, cannabinoid type 1 receptor signaling and inhibition of TRP channels resulting in
pain relief and attenuation of depressive symptoms. TRP, transient receptor potential.

Cannabinoids in the treatment of rheumatoid arthritis Lowin et al.
pro-inflammatory effects on immune cells that limit
their clinical use [50,111]. In contrast, CB1 activa-
tion provides pain relief and improves mood and
one possibility to selectively activate mostly benefi-
cial CB1 pathways is by the means of FAAH inhibi-
tion. It has been shown that in contrast to THC,
FAAH inhibition does not produce adverse effects
but still promotes antidepressive behavior and anal-
gesia [112–114]. Peripheral FAAH inhibition shares
some of the negative effects of CB1 activation in
respect of metabolic changes and should therefore
be avoided [115]. To prevent peripheral CB1 activa-
tion a FAAH inhibitor might be combined with
a CB1 antagonist. With this combination, anti-
 Copyright © 2019 Wolters Kluwe
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inflammatory effects would be augmented: FAAH
inhibition elevates endocannabinoid levels in the
brain that counteract depression and pain, while
CB1 antagonism in the periphery inhibits detrimen-
tal, pro-inflammatory CB1 effects while boosting
anti-inflammatory effects by increasing sympa-
thetic nervous activity (Fig. 1). FAAH inhibition also
enhances anti-inflammatory CB2 signaling due to
enhanced levels of AEA [36] (Fig. 1). In addition,
CBD might be added to RA therapy, as it elicits
antidepressive and anti-inflammatory effects inde-
pendent of cannabinoid receptors and without psy-
chotropic side effects. In arthritis animal models,
CBD provided pain relief and reduced inflammatory
r Health, Inc. All rights reserved.
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Rheumatoid arthritis
cell infiltrates into the joint [116]. Furthermore,
CBD might boost the effect of antirheumatic drugs
as it has been shown that it increases the uptake of
chemotherapeutic compounds into cancer cells [7].
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